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1.PREFACE 

This document is the first version of a perspective article on approaches to monitor 

biodiversity using environmental sensing methods. It constitutes the first deliverable (D1.1) 

of the first task of Work Package 1 (WP1). This Work Package aims to integrate the 

scientific expertise of all partners in a joint research project, leading to joint scientific peer-

reviewed publications on the development and application of environmental sensing 

methods for assessing, restoring and conserving biodiversity in agricultural landscapes. 

Task 1.1 in particular, which resulted in D1.1, aims to assess available methods and data 

to measure biodiversity to ultimately help improve existing monitoring and reporting 

systems (e.g., in the context of results-based payments in the EU Common Agricultural 

Policy). The goal of WP1 is to assess the potential of integrating different environmental 

sensing approaches to quantify and assess biodiversity in agricultural landscapes. At the 

same time, it aims to enable and stimulate scientific publications integrating the expertise 

of the different project partners. Through joint publications, WP1 aims to generate 

interdisciplinary cooperation that supports the training of young scientists and creates 

materials to guide future engagements with local and regional stakeholders. 

2.  CONTRIBUTION TO THE EARTHBRIDGE RESEARCH COMPONENT 

During the planning of task 1.1, we had proposed a literature review or perspective 

article on biodiversity sensing methods and technologies. This was meant to list 

biodiversity measures to be quantified on the ground as a guideline to develop, test and 

upscale methods to monitor larger areas. However, in the time between proposal 

submission and the start of this task in EarthBridge, several publications produced similar 

results. This could not have been foreseen and demonstrates the relevance and 

timeliness of the originally proposed research. Review papers were published on existing 

sensors for  

biodiversity monitoring (e.g., Besson et al., 2022) and on the implementation of these 

sensors into operational networks (e.g., Zeuss et al., 2024). Similarly, papers reviewing and 

comparing biodiversity metrics are available (e.g., Marshall et al., 2020). 

As a consequence, we avoided the duplication of efforts. Instead, we capitalised on this 

newly produced knowledge to explore potential solutions to tackle gap in the 

environmental sensing of agricultural systems. During the scope of this project, we 

showed that, currently, biodiversity data is mainly collected outside of agroecosystems. 

Our perspective piece proposes how technologies uses to monitoring food production 

(i.e. ‘Digital Agriculture’) can be mobilised for biodiversity monitoring (see section 3). 

This contributes to EarthBridge in several ways. First, it contributes towards the proposed 

handbook addressing monitoring needs for local and regional stakeholders (D1.2). We 

achieve this by proposing concrete pathways to achieve national (and international)  
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monitoring requirements using existing technologies while reducing redundancy and 

costs. Second, by identifying a critical gap in the knowledge of biodiversity in agricultural 

systems, we create an important baseline for upcoming scientific tasks planned in WP1 

(tasks 1-2, D1.3, D1.4), which will develop biodiversity monitoring methods and 

applications with agricultural systems. Fourth, we create a baseline for WP3, where will 

conduct a synthesis project together with early-career scientists. To achieve this, our 

current deliverable identifies knowledge gaps that can be tackled during the synthesis 

project. Furthermore, the writing of this deliverable was done with the support of PhD 

students, therefore granting them with required topical knowledge and expertise. 

3. PERSPECTIVE ARTICLE 

The jointly written perspective article was submitted to the journal One Earth on 

December 23th, 2023, which – with a proposed link between disciplines and applications 

– we find an ideal platform for our research. A preprint was created in EcoRxiv (see here), 

a copy of which can be found in the following pages. 
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ABSTRACT 

The global expansion and intensification of food production threaten biodiversity, vital for 
ecosystem services and food security. The Kunming-Montreal Global Biodiversity Framework 
(GBF) advocates drastic changes in agricultural management, yet translating recommendations 
into local action is challenging. Biodiversity-friendly practices carry highly uncertain benefits, 
dissuading their adoption. Reducing uncertainties demands systematic data on biodiversity-
yield interactions. Yet, many biodiversity studies lack such detailed data, and food production 
systems remain underrepresented in global biodiversity datasets. Here, we illustrate how 
Digital Agriculture can address these issues. It uses technologies also applied in biodiversity 
monitoring, but is currently treated separately, leading to duplication of effort and costs. Digital 
Agriculture provides a low-cost, low-effort solution for monitoring biodiversity in food 
production systems, linking it directly to land management practices, and benefiting multiple 
stakeholders without creating additional monitoring requirements. This integration has the 
potential to increase the effectiveness of the GBF in promoting sustainable agricultural 
practices. 

Keywords: GBF, monitoring, agroecology, GBIF, uncertainty, integration  

INTRODUCTION 

The global expansion and intensification of food production systems has led to drastic losses 
of habitat and biodiversity1. As the human population continues to grow, the increasing demand 
for food2 and the associated expansion of farmland are threatening thousands of species with 
extinction1. However, many of these species actually provide ecosystem services that benefit 
food production. For instance, as reported in 2015, 5-8% of food production worldwide was 
directly dependent on pollinators, valued at an estimated US$235-577 billion6. Soil is home to 
more than 50% of the Earth’s species4 and enables the growth of over 140 million metric tons 
of food annually5, and vertebrate diversity is important to halt the spread of pests6 that can 
otherwise cause up to 40% of global yield losses7. Conserving biodiversity is thus essential to 
ensuring food security3 and resilience8. 
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Literature suggests that changes in food production practices are urgently needed9, and that 

reducing the agricultural footprint is critical for ecosystem regeneration10. This is also 
acknowledged in the Kunming-Montreal Global Biodiversity Framework (GBF)11, which was 
recently adopted at the 15th meeting of the Conference of the Parties to the Convention on 
Biological Diversity (CBD). In addition to reducing direct threats to biodiversity, the GBF 
advocates more sustainable land use that helps conserve biodiversity and nature’s contribution 
to people. In particular, Target 10 promotes sustainable intensification15 or agroecological 
practices13 that help maintain  biodiversity-provided services in food production systems. There 
is evidence that such practices can promote biodiversity gains without compromising food 
production requirements14. However, translating GBF recommendations into local action is not 
straightforward. Despite a large body of literature on the general ecosystem benefits of more 
sustainable management practices, these benefits may be gradual and uncertain15, may take 
several years (as with pollination16) or decades (as with soil services17) to manifest, or may not 
occur at all18. In turn, it has been argued that biodiversity-enhancing management practices will 
lead to transition periods of lower productivity19, which may put millions of people at risk of 
hunger by 205020. 

Systematic monitoring capabilities are necessary to provide reliable and scalable 
recommendations on when, where, and which agricultural management practices should be 
implemented to promote biodiversity21. Over the past decade, the biodiversity monitoring 
community has largely reached consensus on key variables for measuring and monitoring 
biodiversity, referred to as Essential Biodiversity Variables22 (EBVs). Recently, a similar set 
of Essential Ecosystem Service Variables23 (EESVs) was proposed. Nonetheless, effective 
management of changes in food production systems requires reference data on crop conditions 
and management practices at the time the species (or trait) was observed. Combining this 
information with field and farm-level yield measurements will be a critical step in 
understanding complex biodiversity yield trade-offs and in guiding the translation of changes 
in EBVs and EESVs in agroecosystems into confident policy recommendations. 

Yet, biodiversity studies often lack such detailed reference data on agricultural management, 
crop condition and yield. Instead, state-of-the-art literature often relies on coarser agricultural 
statistics (e.g., at sub-national scales24) as proxies of yield. Limited data on farmland 
biodiversity also constrain choices of methods and are one reason for thematic focuses of 
research (e.g. on single crops25 or selected taxonomic groups such as birds25 and butterflies26) 
during the analysis of drivers of biodiversity change. Species distribution models, the most 
common class of models in ecology, evolution, and conservation27, have been used to study 
how land use drives biodiversity patterns (e.g. ref28) – though, as we will show later, the species 
observations informing these models tend to originate from outside food production systems. 
All of this prevents drawing comparable causal links between incremental changes in 
biodiversity and concurrent changes in management practices29. 

One way to address these data limitations is involving farmers to improve the collection of 
biodiversity data in food production systems30. Farmers are responsible for implementing 
conservation policies (e.g. as acknowledged in the EU Common Agricultural Policy31) and 
control access to lands where data is to be collected. Following this premise, various 
participatory strategies have been proposed to improve biodiversity monitoring in food 
production systems. These suggestions range from involving farmers in the design of 
conservation measures32 or as citizen scientists33 to proposing a networked design of 
stakeholders, data, tools, and biodiversity monitoring programs up to the global scale34,35.  

However, we argue that current participatory strategies are insufficient and rely on financial 
incentives to motivate farmers31 to participate in what is ultimately an additional and 
challenging task. Involving farmers in the governance, organisation and execution of 
biodiversity monitoring also poses some challenges such as limited representativeness of  



                                                                                                D1.1. Perspective Article                                  

 

 

 
sampled farmland due to varying willingness to participate in such programs30. Issues of 
varying data quality36 have also been reported. Finally, farmers may view biodiversity as 
pests37 and thus not feel the urgency to contribute with data38. 

To tackle these issues and assure systematic data acquisitions, we must ensure the 
participation of farmers without imposing additional challenges on them (Fig. 1). We propose 
this can be achieved through technologies used to optimise food production (hereafter ‘digital 
agriculture’). Whereas digital agriculture helps farmers optimise food production, they may 
also provide highly valuable, but currently overlooked, biodiversity data streams (Fig. 2). Here, 
‘biodiversity’ refers specifically to species observations and, potentially, species traits. The use 
of digital agriculture is essential to tackle land system biases in biodiversity monitoring. Our 
global analysis of existing biodiversity data indicates that current monitoring efforts 
inadequately capture global land use patterns (Fig. 3) and do not reflect the global distribution 
of biodiversity within them (Fig. 4). We then discuss how data biases relate to political factors 
and land privatisation (Fig. 5), and provide recommendations for improving biodiversity 
monitoring through digital agriculture. We aim to stimulate technical advances that reduce 
redundancy and costs in environmental monitoring, while accelerating benefits for nature and 
people. 

 

Figure 1. Unaccounted biodiversity in food production systems. a) A surveyor of biodiversity is located outside private 
farmland, but can record overpassing birds or other species detectable from the distance. Such information can enter public or 
private databases and then contributes to knowledge and monitoring of local biodiversity (shown in blue). The observation of 
areas within the farmland is, however, restricted (e.g. due to fencing or dense crop cultivation). b) Within the maize plantation, 
a wild pig is spotted by a drone. The drone was deployed by a land manager (c, on the right) with the intention of surveying 
crop conditions and detecting potential pests (in red). Simultaneously, another land manager collects data on pests in the 
cultivated crops (e.g. bugs, in red) and on crop conditions (in orange) to make management decisions. As shown at the top of 
panel c), information on pests and crop conditions informs on crop productivity (in yellow). Combining the biodiversity 
information and data given in a) with the pest and crop condition data given in c)  provides a more complete picture of 
biodiversity and how biodiversity responds to (and affects) crop productivity (shown above b). 

Parallels of Digital Agriculture and automated biodiversity monitoring 

Digital Agriculture and automated biodiversity monitoring share many similar technologies. 
Drones, for instance, are employed to detect, locate, and count pests (e.g., insects39, rodents40, 
wild pigs41), to detect plant diseases42 and to monitor cattle in large pasture areas43 in support 
of improving food production and quality. Similarly, drones are being used in biodiversity 
surveys to detect wildlife more efficiently than human observers44, including rare45 and 
elusive46 species. Passive acoustic sensors at ground level can both measure crop height47 and 
be used to detect soniferous species (e.g. birds53). On the other hand, active acoustic sensors 
can provide information on crop health49 and physiological traits that distinguish non-crop  
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plant species50. More recently, robots equipped with artificial intelligence are enabling the 
extraction of environmental DNA (eDNA) to detect organisms harmful to crops56 (e.g. insects), 
information that would otherwise be used to distinguish taxa57 (e.g. insect, microbial species). 
Robots are also increasingly used to assist in farmland management (e.g. to remove weeds53) 
or to enable biodiversity surveys of inaccessible habitats54 (e.g. large farmlands). All of these 
technologies can be integrated with satellite remote sensing to monitor biodiversity change55 
or long-term trends in food production56. 

Digital Agriculture: a hidden source of biodiversity data 

Although digital agriculture and biodiversity monitoring have obvious parallels, they are 
treated as separate branches of environmental monitoring in research, university education and 
practice, resulting in duplication of efforts and costs. In turn, combining these branches can 
yield critical and novel insights (Fig. 2). Species traits and occurrences can be directly linked 
to concurrent biophysical measurements of crop conditions to obtain data-driven knowledge 
on species-specific patterns of resource and habitat selection. This will significantly advance 
our understanding of habitat vs. matrix57 in agricultural landscapes. For instance, there is 
evidence that some species can adapt to man-made habitats58, and that even species thought to 
have been displaced by cropland expansion can return to those lands59. Conversely, if a species 
is not recorded on farmland, despite being detected outside of it, this can provide data on true 
species absences. Knowing whether a species is present or absent, and its relation to specific 
crop conditions, can support systematic causal analysis of which management practices 
enhance or diminish biodiversity60 and thus ecosystems functions and ecosystem services61. 
Ultimately, the concurrent monitoring of biodiversity and food production enables thorough 
and reproducible landscape-level experiments to fully comprehend cross-scale biodiversity-
yield relationships. In contrast, maintaining biodiversity monitoring as a specialised effort 
creates persistent land-use biases in biodiversity data streams, as demonstrated in the following 
sections. 
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Figure 2. Sensing biodiversity through Digital Agriculture. A cropland area (where colours distinguish fields 
with different crops) is observed using different sensing technologies (indicated in the circles above the fields). 
These technologies provide several pieces of information, such as on pests, plant growth and conditions. All of 
the existing information links (shown with full lines) feed into food production and quality information systems 
(in orange). We here propose new information links (shown with dashed lines) that can feed monitoring systems 
for both biodiversity (in green) and food production and quality. Here, ‘biodiversity’ refers specifically to species 
observations and, potentially, species traits. For instance, whereas drones and robots inform on the presence of 
pests so that farmers can make management decisions, this information can additionally be used to distinguish 
different species for biodiversity information. Similarly, ecoacoustics and eDNA used to monitor crop growth and 
health can simultaneously be used to acquire information on roaming species not captured directly through image 
recognition. All of this information can be fed into biodiversity monitoring workflows that can distinguish and 
catalogue species occurrences and assess species traits. In addition, information on biodiversity can be combined 
with that on food production and quality to acquire new knowledge on species habitat preferences. This can help 
us establish causal links between biodiversity and food production and quality that inform on the provision of 
ecosystem services by particular species, and which can then feed the mapping of these services and subsequent 
policymaking, monitoring, and conservation. 

Food production system are underrepresented in global biodiversity datasets 

The Global Biodiversity Information Facility (GBIF) provides access to Big Data on species 
occurrences that directly inform the CBD and, by extension, the GBF. Yet, global differences 
in data-sharing cultures and geographical mobility62, preferential sampling of certain 
taxonomic groups (as seen for some insect taxa63), and the disproportionate sampling of 
populated areas64, lead to spatial and taxonomic biases in GBIF that can distort biodiversity 
assessments65. Here, we focus on previously unreported biases in observations in cropland (see 
the SI for details about our methodology). 

GBIF provides access to over half a billion species observations between 2015 and 2019 
(reference period with land cover data, see SI). Of these, 71.9% were collected in 0.25° cells 
with <30% cropland cover (Fig. 3a). Conversely, 22.2% of global cropland was missing 
species observations. This includes large parts of countries where the pressure of food 
production on biodiversity is high and may even further increase. For instance, 33.6% of the 
cropland cover in China, which produced 20.7% of the world’s cereals in 201966, lacked any 
species observations during the 2015-2019 period. Similarly, more than one third of cropland 
in Angola, where 73.5% of the population faced moderate to high food insecurity in 201970, 
lacked species observations. 

Species observations were concentrated in relatively stable cells with 53.4% occurring in 
cells with a change in cropland cover < 1% (Fig. 3b). In turn, species occurrence in nearly 
32.2% of the cropland area undergoing change was not recorded (Fig. 3c). This includes areas 
of persistent land abandonment (e.g. in Kazakhstan67, which lost >2 million ha of agricultural 
land between 2015 and 201966) and cropland expansion (e.g. along the Sahel belt, which gained 
>4 million ha between 2015 and 201966, associated with losses of biodiversity-rich shrubland 
ecosystems68). Our results hence suggest biases in the selection of sites for biodiversity studies. 
Areas with limited cropland cover, or where cropland cover is stable or rapidly changing, 
appear to be favoured. Indeed, we found that the cumulative global distribution of cropland-
covered cells differed significantly from the distribution of the subset of cells with species 
observations (Kolmogorov-Smirnov test with a p < 0.005 , Fig. 3d). We found similar 
differences in the distributions of cropland-cover changes (p < 0.005, Fig. 3e). 

Land system biases in species observations also reflect biases in the monitoring of global 
species richness. Focusing on cells with cropland cover, we found that the cumulative 
distribution of species richness over 0.25° cells differed significantly from the cumulative 
distribution drawn only from cells with species observations (p < 0.005, Fig. 4a). This includes 
biodiversity hotspots such as the Amazonian forest and the Congo Basin, where international 
food demands and investments threaten biodiversity through cropland expansion69,70 (Fig. 4b). 
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A species-focused analysis of these data indicates that tackling land system biases in species 
observations may challenge our assumptions about how different species interact with 
cropland. For instance, whereas the IUCN Red List reports only 8,466 species inhabiting 
cropland-related ecosystems, 60,544 species were observed in cropland between 2015 and 
2019 alone in our analysis (based on 100-m resolution data, see SI). Of these species, 36,980 
were not reported to occur in cropland, and more than one fifth of these are considered 
threatened (Fig. 4c). This includes species that have been reported to forage in cropland (e.g., 
Eastern Gorilla, Gorilla beringei71) and data deficient species assumed to be dependent on 
forests (e.g. Alcathoe Bat, Myotis alcathoe72). While assuming that classification errors in the 
land cover data play a role in our assessment, our results create a reasonable demand for 
additional scrutiny. 

 

Figure 3 - Sampling gaps and biases in food production systems.  a) Global distribution of cropland cover. The map shows 
per-cell cropland cover percentages, and the histogram shows the distribution of species observations per percentage of 
cropland cover. b) Similar to a), but instead characterising the global distribution of cropland-cover change. c) Per-cell 
characterisation of cropland-cover changes and the number of species observations at a 0.25° resolution. For instance, yellow 
indicates cells with a low number of species distributions and a high cropland-cover change, whereas dark blue shows a low 
cropland cover and a high number of species observations. Here, ‘low’ values are below the 33rd percentile of the global 
distribution of the corresponding variable. In turn, ‘high’ values are above the 66th percentile. d) Comparison of the cumulative 
distribution of cells with cropland cover (d, black line) and the cumulative distribution drawn by a subset of cells containing 
species observations (dashed red line). The pink polygon indicates the distance between distributions. e) Similar to d), but 
comparing distributions of cropland-cover change values. 

 

Figure 4. Biodiversity knowledge gains and biases in food production systems. a) Comparison between the cumulative 
distribution of richness in pixels with cropland cover anytime between 2015 and 2019 (black line) against the cumulative 
distribution of the subset of pixels with species observations made during the same period (red line). b) Global map of species 
richness of mammals, birds, reptiles, and amphibians in pixels that experienced cropland gains between 2015 and 2019, but 
where no species observation was made during the same period. The richness map was obtained from the IUCN Red List of 
species. c) Proportion of species (y-axis) per taxonomic group (x-axis) that are not reported in the IUCN Red List as inhabitants 
of cropland-related ecosystems, but for which GBIF provides species observations found in cropland pixels between 2015 and 
2019. The plot shows the leading taxonomic group that together account for 80% of all species not reported as inhabitants of 
cropland-related ecosystems, but with observations in 100-m cells with cropland cover. The colour of the bars indicates the 
proportions of species associated to different threat categories.  
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Political (dis)incentives and land privatisation hinder biodiversity monitoring 

The biases revealed here are likely driven by biodiversity-related policies. For instance, 
article 7 of the CBD73, approved in 1992, promotes efforts to identify and monitor species in 
biodiversity-rich and wilderness areas. In contrast, food production systems are only mentioned 
in relation to domesticated or cultivated species. The lack of established biodiversity 
monitoring programs in many countries34 makes data collection heavily reliant on short-term 
projects74. In line with CBD guidelines, these projects (unless their focus is on agroecology) 
tend to prioritise areas of high biodiversity79 or unique and pristine ecosystems. Comparatively 
lower species detection rates in food production systems76 have likely discouraged systematic 
scientific investments. 

We see such biases, for instance, in Brazil’s legal Amazonia (Fig. 5a-c), where expanding  
food production systems pose a major threat to biodiversity77. Improved access to remote areas 
and reduced travel time occurs with road construction facilitating commodity transportation, 
but potentially also the establishment of new biodiversity monitoring sites. (Fig. 5a).  Between 
2000 and 2019, the majority of species observations in food production systems of legal 
Amazonia (combining cropland and pastures) occurred in expansion areas (64.5%, compared 
to 9.4% in areas of abandonment). Yet, these observations totaled only 47,622 out of all 
219,529 observation sites (i.e. unique year-coordinate combinations) recorded in the region . 
Of these, 51.3% were recorded in areas where travel times did not improve substantially (i.e. 
< 1h) despite the concurrent expansion of food production systems (Fig. 5b). Moreover, in the 
expansion areas, most observation sites were visited only once (Fig. 5c). This makes it difficult 
to systematically assess biodiversity change due to agricultural activities in general or specific 
management practices in particular. 

However, even if systematic assessments were sustained, patterns of land access and 
privatisation can be a source of spatial biases in species observation data. In California, for 
instance, we recorded 2,936 species observations made within food production systems in 2019 
(0.6% of all observations in the state). Based on these data, we found a correlation between the 
distance of observation points to the centre of the nearest land parcel and the approximate 
radius of that parcel (Spearman’s rho=0.61, p < 0.005, Fig. 5d). This indicates observations 
concentrated along the boundaries of land parcels (e.g., Fig. 5e), limiting insight into 
differences between field core and edge. When this occurs, the effort to observe the entirety of 
a land parcel increases (Fig. 5f), and the combined effect of the Earth’s curvature and 
topography may make ground-dwelling species imperceptible (Fig. 5g). Land parcels larger 
than 100 ha composed 85.7% of the world’s food production systems by 2020, and this trend 
is likely to continue as improvements in technologies enable managing increasingly larger 
areas78. We therefore argue that the combined effects of globally varying field sizes79 and the 
associated limitation of access to lands require more attention in biodiversity monitoring, where 
an emphasis is currently placed on travel distances80.  
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Figure 5. Sources of land system biases in species observation data. a) Map of the legal Amazonia, Brazil. Each 1-km cell 
classifies the expansion and abandonment of agriculture, and changes in travel time (by more than 1h) from a given cell to the 
nearest city with at least 50,000 habitats. In addition, the map distinguishes stable agriculture. b) Relative distribution of 
species observations per each class in a), and for each year between 2000 and 2019. c) For each year, the cells first observed 
in that year are coloured based on the number of subsequent years of observation.  In each year, the number of cells per year-
frequency category is normalised by the number of cells observed in that year. d) Correlation between the radii of land parcels 
–  estimated as ��������	
 ����/�� – and the distance between field centroids and species observations. Colours indicate  
frequency of observation. e) Example of cropland area in California where black lines indicate field boundaries, and red dots 
locate species observations collected along a road. f) Effort to observe and discriminate   ground-dwelling and airborne species 
as a function of the distance and elevation measured between the observer and the species. g) Minimum elevation at which a 
species can be perceived. This is estimated based on the species observation locations mapped in e), and based on a digital 
elevation model with a resolution of 1-m. 

Closing biodiversity knowledge gaps with Digital Agriculture 

The limitations of biodiversity data we exemplified do not diminish the huge and extremely 
valuable efforts of both professional and citizen science biodiversity observers33. Furthermore, 
the expertise of taxonomic specialists remains indispensable81. Yet, with urban populations 
projected to increase by 13% by 2050 at the cost of those in rural areas82, citizen science at 
least is likely to be displaced away from food production systems. And, as alluded to, factors 
such as restricted access to land parcels and funding trends contribute increasing data gaps. It 
is vital to ensure that policy recommendations, such as those on biodiversity-friendly 
agricultural management practices (GBF, target 10), are not skewed by sampling biases but 
based on systematic and global biodiversity monitoring capabilities37. Such capabilities would 
support rapid detections of biodiversity changes and the subsequent attribution of their 
causes35, enabling more confident policy recommendations29. 

However, large-scale biodiversity monitoring programs are still lacking in most countries34. 
Their implementation would cost millions of US dollars annually83, clashing with global 
inequalities in economic power76. In contrast, investments promoting innovation in agriculture 
are increasing rapidly. Globally, the agriculture market reached US$6.2 trillion in value in 2021 
after an exponential growth85, which is more than three times the GDP of Sub-Saharan Africa. 
These investments are accompanied by those in Digital Agriculture to increase yields, improve 
efficiency, reduce waste, cost and environmental impact, and sustain food security86. For 
instance, the UN-led 50 by 2030 initiative will invest US$500 million to digitise food 
production in 50 countries in Africa, Asia, the Middle East and Latin America by 203087. 

Digital Agriculture technologies are similar to those used to survey biodiversity (see 
Parallels of Digital Agriculture and biodiversity monitoring). Therefore, data originally  
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intended to monitor food production can also help detect and describe non-crop biodiversity in 
food production systems. It is important to note, however, that Digital Agriculture is not a 
replacement for traditional biodiversity monitoring. Exploratory research is still required (e.g., 
subterranean biodiversity is largely unknown88), and biodiverse ecosystems will require 
continuous and dedicated monitoring (e.g. such as in tropical moist forests, which are reported 
to be home to more than half of the world’s vertebrates89). In fact, focusing on Digital 
Agriculture alone may even shift current spatial and thematic biases in biodiversity data. 
Nonetheless, Digital Agriculture offers an immediate and cost-effective solution to address 
apparent current knowledge gaps on biodiversity in food production systems. It also provides 
a platform for systematic assessments of biodiversity-yield interactions that can improve 
recommendations for sustainable agricultural management practices. 

To enable synergies in the short-term, we must ensure that the data generated by Digital 
Agriculture becomes Findable, Accessible, Interoperable, and Reusable (FAIR). This would 
empower biodiversity experts to apply their own methods to translate digital agriculture data 
into biodiversity data (e.g.,  by applying computer vision methods to drone imagery originally 
intended to provide information on crop conditions). Combined with knowledge of concurrent 
management practices and crop conditions, biodiversity experts can generate knowledge and 
models on biodiversity-yield interactions. To support data sharing, initiatives are already 
underway to promote FAIR agricultural data principles90, and platforms are being designed to 
provide such data91. In addition, the UN-funded Consultative Group on International 
Agricultural Research (CGIAR) is advancing generalised principles and tools to enable the 
sharing and distribution of big agricultural data92. 

In the long term, sustaining the benefits of Digital Agriculture for biodiversity monitoring 
demands collaborative workflows between farmers, biodiversity experts and decision-makers. 
However, we need to go beyond current participatory strategies. Rather than involving farmers 
in biodiversity monitoring, which adds to the challenges of current farming, collaborations 
could, for instance, coordinate smart solutions to deploy sensing technologies in ways that 
maximise returns for all stakeholders involved. For example, drones used to assess crop growth 
could also be employed to monitor green infrastructure in agricultural land without 
compromising the farmers’ needs. Similarly, night-time and automated deployments of 
acoustic sensors would enable the detection of pests (from a farmers perspective), while also 
allowing for the recording of nocturnal species (e.g. bats, insects). This could also help bridge 
the divide that many farmers feel between society’s expectation to conserve nature and the 
desire to appear productive to their peers93. Further, studies have shown that knowledge of the 
ecological effectiveness of agricultural practices can help increase the likelihood of their 
adoption by farmers94. Cooperation could be extended to other disciplines. For instance, the 
involvement of engineers will support the adoption of new sensing technologies, such as robots 
(e.g. ref95). Experts from other disciplines, such as agronomy and computer vision, could help 
design strategies for calibrating sensing routines to increase knowledge benefits across 
disciplines (and farmers) while reducing monitoring costs.  

Despite this potential, we should acknowledge that there are risks associated with relying 
on rapidly advancing technologies. This may further concentrate data collection efforts in 
countries with the financial resources to invest in acquiring, maintaining, and distributing these 
technologies. Furthermore, disparities in technical and scientific development may affect the 
uptake of new technologies96. To avoid this, we must ensure that data contributions are not 
restricted to only advanced technologies. Where financial capacity is lower, even data obtained 
through manual sampling and visual assessments of crops would be immensely valuable given 
the persistence of spatial and taxonomic biases in biodiversity data62–64. However, we also need 
to ensure that different tiers of data contributions are accompanied by uncertainty metrics. To 
this end, metadata standards and quality control measures have been proposed91 that can  
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support the development and calculation of quality metrics (e.g. on data completeness, clarity). 
Such metrics can then be used as part of models and analytical frameworks fed with data from 
Digital Agriculture, such as through ‘weight of evidence’ approaches97. 

Our recommendations have global relevance. In the global north, where monitoring 
capabilities are most advanced62, Digital Agriculture can help tackle current land system biases 
in biodiversity data as outlined above. For instance, the European Biodiversity Observation 
Network (Europa BON) reported biases in biodiversity data that prevent systematic 
assessments of land-use threats to biodiversity98. To achieve this,  financial incentives are 
required to enable systematic biodiversity monitoring capabilities in Europe, which are 
currently not explicitly supported in the European Common Agricultural Policy for the period 
2023-202731. We see particular opportunities to tackle general taxonomic biases. Insects 
encounter large taxonomic gaps in existing biodiversity databases (e.g. as shown in GBIF63). 
Agriculture has the potential to enhance insect diversity under certain conditions, such as 
through crop heterogeneity99. Considering insects’ significant role as pests, it becomes 
plausible that extensive datasets on insect species occurrences can be efficiently derived 
through the application of Digital Agriculture. 

In the global south, our recommendations may also help address gaps in monitoring 
capacity. In countries where biodiversity monitoring is, by necessity, considered a lower 
priority compared to other development issues (e.g. food security), Digital Agriculture offers a 
cost-effective solution to address multiple development challenges without large additional 
financial or organisational burdens. In fact, research shows that most of the investments in 
agriculture across the global south are already aimed at innovation100. The agricultural market 
could likely bear the financing costs if policies were in place to motivate the sharing of acquired 
biodiversity data. In turn, as new data enables more concrete and confident valuations of 
biodiversity and its contributions to people, thereby transforming nature from a mere by-
product to a quantifiable asset, private investments in the agricultural industry can additionally 
increase data returns. 

CONCLUSION 

The GBF has set an ambitious agenda to prevent further biodiversity losses. It aims to restore 
30% of global ecosystem extents by 2030 (Target 2) and emphasises the importance of changes 
in agricultural management (Target 10) to achieve this mammoth task. However, the 
advancement and implementation of sustainable agricultural practices faces significant 
challenges due to uncertainties surrounding the optimal management of trade-offs between 
biodiversity and yield. These complexities pose major obstacles to addressing the critical issues 
related to global food security. . Reducing uncertainties therefore demands tackling biases in 
biodiversity data and pairing them with data on food production. Here, we propose that Digital 
Agriculture offers a cost-effective solution. It employs some of the same technologies used to 
monitor biodiversity, which means it can in principle provide systematic biodiversity data 
directly linked to information on food production. This can address current land system biases 
in biodiversity data without imposing new burdens on farmers, who can instead benefit 
immediately from the same data. This would enable co-designing nature-based solutions 
sensitive to the needs and challenges of both farming and biodiversity monitoring. Nonetheless, 
we emphasise that Digital Agriculture should not be regarded as a direct  substitute for 
traditional biodiversity monitoring, and the expertise of taxonomic specialists remains 
indispensable. In fact, if not properly designed, monitoring through Digital Agriculture may 
even shift current biases in biodiversity data. Nonetheless, the integration of  Digital 
Agriculture into biodiversity monitoring systems could substantially improve our 
understanding of the interactions between biodiversity and yield, how these interactions 
generate ecosystem services, and how species use the agricultural matrix for movement and  
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foraging. Ultimately, this integration would enable smart solutions to optimise data extraction, 
leading to big knowledge returns. 
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SUPPLEMENTARY INFORMATION 

METHODS 

Analysis of gaps and biases in species observations 

Species observations 

We mobilised all species observation data collected between 2015 and 2019 from the Global 
Biodiversity Information Facility (GBIF) to analyse potential biases in biodiversity 
observations in food production systems. We focused on the period 2015-2019 to align our 
analysis of species observation data with concurrent global land cover data (see next section). 
As a basis for the detection of spatial biases, we derived global layers of per-cell species 
observation counts at a resolution of 0.25°. This resolution offers sufficient detail to detect both 
regional and global biases and data gaps, as well as general land system patterns. It also 
facilitates the visualisation of spatially sparse species observations. To derive these layers, we 
used the function occ_count() from the R package rgbif to count species observations within 
each cell. Using this approach, we first derived annual layers(2015 to 2019), to compare annual 
sampling effort per cell with corresponding cropland cover percentages. 

Measurements of land system biases 

To detect land system biases in species observations, we assessed how the presence and 
frequency of observations interacted with cropland cover and cropland-cover change. While 
the first variable provided information on site selection biases, the second one informed on how 
these biases affected the representation of land system changes in species observations. Areas 
experiencing such changes provide ideal opportunities for monitoring immediate and long-term 
biodiversity-yield interactions under different land management practices. 

We used the Copernicus Land Cover dataset1 due to its global extent, high spatial and 
thematic resolution and annual coverage (which enabled generalised statements on the 
persistence of site selection biases). It also has the major advantage that it directly reports per-
cell proportions of land cover (which allows inferring cell-area proportions to account for 
regional variations in cell sizes). Consistent with our analysis of species observations, we 
aggregated the 100-m resolution annual cropland layers provided by the CLC dataset to a 0.25° 
resolution through averaging (hereafter ‘cropland cover’), to match the resolution of the species 
observation layers. We then calculated the mean cropland cover between 2015 and 2019, and 
the change in cropland cover between the beginning and end of this period (hereafter ‘cropland-
cover change’). 

We analysed these data in several ways.  Firstly, we compared the distribution of species 
observations with the corresponding cropland cover (Fig. 3a in the main manuscript), and 
against the cropland-cover change measured between 2015 and 2019 (Fig. 3b in the main 
manuscript). This enabled us to detect whether the site selection biases persisted from year to 
year. Secondly, we focused on cells covered by cropland at any time between 2015 and 2019. 
For each aggregated layer (i.e., mean cropland cover, cropland-cover change), we compared 
the cumulative distributions of all cells to those of cells with species observations using 
Kolmogorov-Smirnov2, a nonparametric test for equality of continuous and one-dimensional 
probability distributions (Fig. 3d-e in the main manuscript). We used a weighted version of 
this test, as implemented in the function ks_test() of the R package Ecume3. For the global 
distributions, we used a static weight of 1 for every cell. For cells with species observations, 



                                                                                                D1.1. Perspective Article                                  

 
 

 

the weight in each cell was the corresponding number of observations between 2015 and 2019. 
We rejected the null hypothesis that both cell samples came from the same population if the p-
value was below 0.005, following recommendations on significance testing4.  

Implications of biases in biodiversity monitoring 

We compared the observed biases and gaps in species observations with data on the 
combined species richness of birds, amphibians, mammals, and reptiles provided by the IUCN 
Red List of species5 as a global grid with a resolution of 5km. Richness in this dataset informs 
on the number of species potentially occupying a given cell and is estimated by summing the 
range maps of individual species on a cell-by-cell basis. In line with our analysis of land system 
biases, we aggregated these data to a resolution of 0.25° through averaging. First, focusing on 
cells with cropland cover, we analysed differences between the global cumulative distribution 
of richness across cells with cropland cover and the cumulative distribution drawn from the 
subset of cells with species observations. Again, we used the weighted Kolmogorov-Smirnov 
test (Fig. 4a in the main manuscript). As described previously, the weights corresponded to the 
number of species observations per cell, and unobserved cells were given a constant weight of 
1. Second, we mapped richness for cells without species observations and with changes in 
cropland cover to describe global patterns of undersampling (Fig. 4b in the main manuscript). 

Third, we compared species observations with knowledge of species habitat preferences to 
determine how observation gaps and biases may have led to misconceptions of species 
ecologies (Fig. 4c in the main manuscript). To do so, we retrieved species-specific assessments 
of habitat preferences from the IUCN Red List of Threatened Species. From the list of species 
with threat assessments, we distinguished those that were not associated with cropland-related 
habitats as described in the IUCN Habitat class scheme6 (classes 14.1, 14.4, 15.7, and 15.8). 

For each species in this group that was observed between 2015 and 2019, we collected all 
corresponding GBIF records without coordinate issues (e.g., coordinates associated with 
country centroids or scientific institutions). For each observation, we then extracted the 
proportion of cropland based on the 100-m resolution Copernicus Land Cover data1. During 
the extraction process, we considered all cells within the radius defined by the coordinate 
uncertainty. In case this was not directly provided along with the species observation, we 
inferred it from the number of decimal places in the coordinates. If there were ≥5 decimal 
places, the error was assumed to be ≤1 m. As the number of decimal places decreases, the error 
increases by a factor of 10 for each decimal place. If there were no decimal places, the error 
was assumed to be 1 degree. Based on the extracted data, we quantified the percentage of 
observations per species overlapping cells with cropland-cover. 

Assessing sources of bias 

We used data from two regions to provide examples of potential reasons for site selection 
biases. Specifically, we analysed data from Brazil to evaluate revisits to species observation 
sites relative to agricultural expansion (to inform on site selection biases motivated by an 
interest in drivers of biodiversity loss). We further analysed data from California to evaluate 
the geographic locations of species observations within agricultural land parcels (to inform on 
the impacts of privatisation and access to land). 

Site selection biases 

We compared changes in agriculture with the spatial and temporal distribution of species 
observations to: i) assess whether species observations occur in areas of agricultural expansion 
or abandonment (Fig. 5a-b in the main manuscript); ii) detect revisits to these sites, the absence 
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of which implies the lack of a systematic biodiversity assessment (Fig. 5c in the main 
manuscript). We focused this assessment on the legal Amazonia, anticipating that the active 
deforestation frontiers driven by agricultural expansion would motivate biodiversity surveys.  

We mapped changes in agriculture using a national land-cover dataset for Brazil7. These 
data is provided at a 30-m resolution, but we aggregated it to a 1 km resolution expressing per-
cell proportions of 30-m cells classified as ‘agriculture’. In the reference land cover dataset, 
‘agriculture’ included cells classified as ‘pastures’, ‘sugar cane’, ‘palm oil’, ‘soybean’, ‘rice’, 
‘other temporary crops’, ‘coffee’, ‘citrus’, ‘other perennial crops’, or ‘cotton’. Although the 
land cover dataset is available annually between 1985 and 2022, we focused on the period 
2000-2019. The start of this period coincides with massive improvements in Landsat data 
frequency, allowing for  more confident land cover mapping8. The end precedes the start of the 
global  COVID-19 pandemic, which negatively impacted the frequency and quality of species 
observations9. 

In our comparison of species observations with changes in agriculture, we additionally 
considered changes in travel time. We assumed that the expansion of agriculture would be 
accompanied by the development of the infrastructure needed  for the transport of the produced 
commodities. As new roads connect previously inaccessible land, we expected new species 
observations in these lands. To measure changes in travel time, we used global data with a 1-
km resolution, mapping the travel time to the nearest city with at least 50,000 inhabitants from 
any given cell10. These data are available for the years 2000 and 2015, and we subtracted them 
to derive a layer on long-term changes in travel time requirements.  

To assess the effect of agricultural land change and travel time on species observations, we 
mobilised all records collected across the legal Amazonia between 2000 and 201911. We then 
translated these data into ‘observation sites’, corresponding to unique 1 km cells with one or 
more species observations in a given year. This aggregation step is more meaningful than the 
original observation coordinates. While the coordinates of specific observations may change 
from year to year, sites of interest for biodiversity monitoring are likely to be visited in multiple 
years. Furthermore, this aggregation allowed us to focus on the geographical location rather 
than on the frequency  of species observations, which may vary widely. 

Impacts of privatisation and access to land 

We demonstrated the effect of privatisation of agricultural land parcels on species 
observations (Fig. 5d-f in the main manuscript). To do so, we compared GBIF data for 201912 
with land cadastre data for California, USA, for the same year13. We chose this region because 
of the availability of annual, high-resolution, and authoritative land cover data, the relatively 
high frequency of species observations, and the openness of cadastre data. 

To limit our analysis to observations made in agricultural areas, we removed GBIF data not 
overlapping land covers described as ‘cultivated crops’ or ‘hay/pastures’ in the authoritative 
national land cover data for 201914. We used these data for filtering rather than the land cadastre 
data because species observations might occur at field boundaries. In turn, the classification of 
each cell is sensitive to the dominant composition of the land surface, meaning that 
observations made just outside of land parcels might still be classified as agriculture. In 
addition, land cover data provided us with confirmation that a land parcel was actively managed 
in the observation year, which would make it more difficult to access than fallow land. 
Additionally, we excluded species observations made outside of a 100-m radius around 
agricultural land parcels to account for species observations made on cropland within urban 
areas. This is because land parcels used for agriculture are not distinguished in the cadastral 
data if located within urban areas. 
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For each species observation, we calculated the minimum distance to the centroid of the 
nearest land parcel as well as the size of that parcel. We then correlated these data to assess 
whether distances were related to parcel sizes (Fig. 5d in the main manuscript). A high 
correlation would hence indicate that species observations are persistently collected along or 
near the edges of land parcels (as seen in Fig. 5e in the main manuscript). Because land parcels 
can have various shapes, prior to our correlation analysis, we translated parcel sizes into their 
approximate radius, estimated as ������/��, where a is the area of the parcel in ha. 

As a follow-up analysis, we evaluated how the position of observers may have limited their 
ability to detect species within land parcels (Fig. 5f in the main manuscript). We used the 
function viewshed() from the R package terra that estimates how high above the ground a 
species must be to be perceived by the observer. This estimate is based on the difference in 
elevation between the observers’ location and the surrounding terrain. Here, we assumed an 
observer height of 1,80 m and a target height of 1 m (e.g., a wild pig, a species which is invasive 
to California). The data on the elevation of the terrain originates from a digital elevation model 
with a 1-m resolution provided by the United States Geological Survey15. 
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